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Denote by 11, the set of all real algebraic polynomials of degree at
most n. We define the class

()= {pel, m({xe[—1,1]: p(x)|<1})=2—-s5}  (0<s<2),

where m(A) denotes the Lebesgue measure of 4. How large can the
maximum modulus be on [ —1,1] for polynomials from I7,(s)? In [7]
E. J. Remez answered this question establishing the best possible upper
bound. The solution and one of its applications in the theory of orthogonal
polynomials can be found in [5] as well. Remez-type inequalities and their
applications were studied in [1-3]. The purpose of this paper is to prove
a sharp Remez-type inequality for constrained polynomials.
Remez’s inequality asserts that

max |p()] <Q,(4/2—s)—1)  (pell(s)0<s<2), (1)

—lsxs

where Q,(x)=cos(n arc cos x) is the Chebyshev polynomial of degree ».
For a < b we define

P.(a, D)

:{ Z (b—x) (x—a)"/withall «,>0 or all ocj<0}.

The class P,(—1, 1) was introduced and examined thoroughly by G. G.
Lorentz in [6], subsequently a number of properties were ohtained in [4].
By an observation of Lorentz, if p e IT, has no zero in the open unit circle
then pe P,(—1, 1). In this paper we prove the following sharp Remez-type
theorem for polynomials from P,(—1,1).
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THEOREM. We have

max [p()I<(1—52)""  (peP (=1, 1)nIl(s),0<s<2) (2)

—Igx<

and the equality holds only for the polynomials +(1+x)"/(2—s)".

CoROLLARY. If pell (s) has no zero in the open unit circle then (2)
holds.

Proof of the Theorem. Observe that [c,d] < [a, &] implies P, (a, b) <
P,(c, d). This follows simply from the definition and the substitutions

b—c b—d
b—x_d—c(d—x)-i_dfé(x_c)’v
c—a d—a
x—a—d_c(d—x)+d—_g(x~c),

where (b—c)/(d—c¢), (b—d)/(d—c), (c—a)/(d—c), and (d—a)/(d—c) are
non-negative. Let pe P,(a, b) with the representation

p(x)=> ab—x) (x—a)"~/  withalla;>0 oralla;<0. (3)

Jj=0

Then for 0 <s <2 we easily deduce

(b)) = o] (b—aY' = (g) 2ol (y—a)' < (%) P
<=2 p)| (b= (b—a)s2< y<b) 4)
and similarly
p@I<-s2)"p)  (a<y<at(B-a)s2). ()

Now let pe P,(—1,1)nIT,(s) (0<s<2), and choose a ze [—1, 1] such
that

lp(2)l= _max |p(x)|. (6)

Since pell,(s), there is a y from. either [z—s(z+1)/2,z] or
[z,z+s(1—2)/2] such that |p(y){<1. In the first case the relation
P,(—1,1)cP,(—1,z) and (4) yield the desired result, and in the second
case the relation P,(—1,1)<= P,(z, 1) and (5) give the theorem.
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