A Sharp Remez Inequality on the Size of Constrained Polynomials

Tamás Erdélyi
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210-1174, U.S.A.

Communicated by V. Totik
Received June 30, 1989

Denote by Π_{n} the set of all real algebraic polynomials of degree at most n. We define the class

$$
\Pi_{n}(s)=\left\{p \in \Pi_{n}: m(\{x \in[-1,1]:|p(x)| \leqslant 1\}) \geqslant 2-s\right\} \quad(0<s<2)
$$

where $m(A)$ denotes the Lebesgue measure of A. How large can the maximum modulus be on $[-1,1]$ for polynomials from $\Pi_{n}(s)$? In [7] E. J. Remez answered this question establishing the best possible upper bound. The solution and one of its applications in the theory of orthogonal polynomials can be found in [5] as well. Remez-type inequalities and their applications were studied in [1-3]. The purpose of this paper is to prove a sharp Remez-type inequality for constrained polynomials.

Remez's inequality asserts that

$$
\begin{equation*}
\max _{-1 \leqslant x \leqslant 1}|p(x)| \leqslant Q_{n}(4 /(2-s)-1) \quad\left(p \in \Pi_{n}(s), 0<s<2\right), \tag{1}
\end{equation*}
$$

where $Q_{n}(x)=\cos (n \arccos x)$ is the Chebyshev polynomial of degree n. For $a<b$ we define

$$
\begin{aligned}
& P_{n}(a, b) \\
& \qquad=\left\{p: p(x)=\sum_{j=0}^{n} \alpha_{j}(b-x)^{j}(x-a)^{n-j} \text { with all } \alpha_{j} \geqslant 0 \text { or all } \alpha_{j} \leqslant 0\right\}
\end{aligned}
$$

The class $P_{n}(-1,1)$ was introduced and examined thoroughly by G. G. Lorentz in [6], subsequently a number of properties were ohtained in [4]. By an observation of Lorentz, if $p \in \Pi_{n}$ has no zero in the open unit circle then $p \in P_{n}(-1,1)$. In this paper we prove the following sharp Remez-type theorem for polynomials from $P_{n}(-1,1)$.

Theorem. We have

$$
\begin{equation*}
\max _{-1 \leqslant x \leqslant 1}|p(x)| \leqslant(1-s / 2)^{-n} \quad\left(p \in P_{n}(-1,1) \cap \Pi_{n}(s), 0<s<2\right) \tag{2}
\end{equation*}
$$

and the equality holds only for the polynomials $\pm(1 \pm x)^{n} /(2-s)^{n}$.

Corollary. If $p \in \Pi_{n}(s)$ has no zero in the open unit circle then (2) holds.

Proof of the Theorem. Observe that $[c, d] \subset[a, b]$ implies $P_{n}(a, b) \subset$ $P_{n}(c, d)$. This follows simply from the definition and the substitutions

$$
\begin{aligned}
b-x & =\frac{b-c}{d-c}(d-x)+\frac{b-d}{d-c}(x-c), \\
x-a & =\frac{c-a}{d-c}(d-x)+\frac{d-a}{d-c}(x-c),
\end{aligned}
$$

where $(b-c) /(d-c),(b-d) /(d-c),(c-a) /(d-c)$, and $(d-a) /(d-c)$ are non-negative. Let $p \in P_{n}(a, b)$ with the representation

$$
\begin{equation*}
p(x)=\sum_{j=0}^{n} \alpha_{j}(b-x)^{j}(x-a)^{n-j} \quad \text { with all } \alpha_{j} \geqslant 0 \text { or all } \alpha_{j} \leqslant 0 \tag{3}
\end{equation*}
$$

Then for $0<s<2$ we easily deduce

$$
\begin{align*}
|\dot{p}(b)| & =\left|\alpha_{0}\right|(b-a)^{n}=\left(\frac{b-a}{y-a}\right)^{n}\left|\alpha_{0}\right|(y-a)^{n} \leqslant\left(\frac{b-a}{y-a}\right)^{n}|p(y)| \\
& \leqslant(1-s / 2)^{-n}|p(y)| \quad(b-(b-a) s / 2 \leqslant y \leqslant b) \tag{4}
\end{align*}
$$

and similarly

$$
\begin{equation*}
|p(a)| \leqslant(1-s / 2)^{-n}|p(y)| \quad(a \leqslant y \leqslant a+(b-a) s / 2) \tag{5}
\end{equation*}
$$

Now let $p \in P_{n}(-1,1) \cap \Pi_{n}(s)(0<s<2)$, and choose a $z \in[-1,1]$ such that

$$
\begin{equation*}
|p(z)|=\max _{-1 \leqslant x \leqslant 1}|p(x)| \tag{6}
\end{equation*}
$$

Since $p \in \Pi_{n}(s)$, there is a y from either $[z-s(z+1) / 2, z]$ or $[z, z+s(1-z) / 2]$ such that $|p(y)| \leqslant 1$. In the first case the relation $P_{n}(-1,1) \subset P_{n}(-1, z)$ and (4) yield the desired result, and in the second case the relation $P_{n}(-1,1) \subset P_{n}(z, 1)$ and (5) give the theorem.

References

1. T. Erdélyi, Remez-type inequality on the size of generalized polynomials, manuscript.
2. T. Erdély, The Remez inequality on the size of polynomials, in "Approximation Theory VI:I," C. K. Chui, L. L. Schumaker and J. D. Ward (Eds.), pp. 243-246.
3. T. Erdélyi, Nikolskii-type inequalities for generalized polynomials and zeros of orthogonal polynomials, J. Approx. Theory, to appear.
4. T. Erdélyi and J. Szabados, On polynomials with positive coefficients, J. Approx. Theory 54 (1988), 107-122.
5. G. Freud, "Orthogonal Polynomials," Pergamon, Oxford, 1971.
6. G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239-251.
7. E. J. Remez, Sur une propriété des polynômes de Tchebycheff, Comm. Inst. Sci. Kharkow 13 (1936), 93-95.
