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Denote by Iln the set of all real algebraic polynomials of degree at
most n. We define the class

Iln(s) = {p E Iln:m( {x E [ -1, 1] : Ip(x)1 ~ 1}) ~ 2 - s} (0<s<2),

where m(A) denotes the Lebesgue measure of A. How large can the
maximum modulus be on [-1, 1] for polynomials from Iln(s)? In [7]
E. J. Remez answered this question establishing the best possible upper
bound. The solution and one of its applications in the theory of orthogonal
polynomials can be found in [5] as well. Remez-type inequalities and
applications were studied in [1-3]. The purpose of this paper is to prove
a sharp Remez-type inequality for constrained polynomials.

Remez's inequality asserts that

max Ip(x)I~Qn(4/(2~s)~1)
-l~x~l

(p E Iln(s), 0 < s < 2), (1)

where Qn(x) = cos(n arc cos x) is the Chebyshev polynomial of degree n.
For a < h we define

Pn(a, b)

= {P: p(x) = .f rxj(b -x)j (x- at- j with all rxj~O or all rxj~ o}.
j=O

The class P n(-1, 1) was introduced and examined thoroughly by G. G.
Lorentz in [6], subsequently a number of properties were ohtained in [4].
By an observation of Lorentz, if P E Iln has no zero in the open unit circle
then pEPn( -1, 1). In this paper we prove the following sharp Remez-type
theorem for polynomials from Pn ( -1,1).
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THEOREM. We have

max Ip(x)1 ~ (l-s/2)-n
-l~x:E;l

and the equality holds only for the polynomials ±(1 ±xt/(2-st.

COROLLARY. If pEIIn(s) has no zero in the open unit circle then (2)
holds.

Proof of the Theorem. Observe that [e, dJ c [a, bJ implies Pn(a, b) c

Pn(e, d). This follows simply from the definition and the substitutions

b-e b-d
b-x=- (d-x)+-- (x-c),

d-e d-e

e-a d-a
x-a=-- (d-x)+-- (x-c),

d-e d-e

where (b-e)/(d-e), (b-d)/(d-e), (e-a)/(d-e), and (d-a)/(d-e) are
non-negative. Let pEPn(a, b) with the representation

n

p(x)= L: (X}(b-x)} (x-at- j

}=o

Then for 0 < s < 2 we easily deduce

with all (X) ~ 0 or all (X) ~ o. (3)

, (b-a)n (b-a)nIp(b)1 = l(Xol (b-at= - l(Xol (y-at~ - Ip(y)1
y-a y-a

~(I-s/2)-nlp(y)1 (b-(b-a)s/2~y~b) (4)

and similarly

Ip(a)1 ~ (l-s/2)-n Ip(y)1 (a ~ y ~ a + (b - a) s/2). (5)

Now let p EPn( -1,1) n IIn(s) (0 <s < 2), and choose a ZE [-1, IJ such
that

Ip(z)1 = max Ip(x)l·
-l~x~l

(6)

Since pEIIn(s), there is a y from either [z-s(z+I)/2,zJ or
[z,z+s(l-z)/2] such that Ip(y)I~1. In the first case the relation
Pn( -1, 1) c Pn( -1, z) and (4) yield the desired result, and in the second
case the relation Pn( -1, l)cPn(z, 1) and (5) give the theorem.
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